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1. Introduction

“Objects in the real world have only one thing in common
 -- they are all different.”

In the recent years an alternative to the traditional class-based object-oriented
language model has emerged. In this prototype-based paradigm [Bor86, Lie86,
LTP86, Ste87, UnS87, SLU88, DMC92, Bla94] there are no classes. Rather, new
kinds of objects are formed more directly by composing concrete, full-fledged
objects, which are often referred to as prototypes. When compared to class-based
languages, prototype-based languages are conceptually simpler, and have many other
characteristics that make them suitable especially to the development of evolving,
exploratory and distributed software systems.

The distinction between class-based and prototype-based systems reflects a long-
lasting philosophical dispute concerning the representation of abstractions. Plato
viewed forms -- stable, abstract, "ideal" descriptions of things -- as having an
existence more real than instances of those things in the real world. Class-based
languages such as Smalltalk, C++ or Simula are Platonic in their explicit use of
classes to represent similarity among collections of objects. Prototype-based systems
such as Self [UnS87], Omega [Bla91, Bla94], Kevo [Tai92, Tai93], GlyphicScript
[Gly94] and NewtonScript [SLS94] represent another view of the world, in which one
does not rely so much on advance categorization and classification, but rather tries to
make the concepts in the problem domain as tangible and intuitive as possible. A
typical argument in favor of prototypes is that people seem to be a lot better at dealing
with specific examples first, then generalizing from them, than they are at absorbing
general abstract principles first and later applying them in particular cases.

Prototypes give rise to a broad spectrum of interesting technical, conceptual and
philosophical issues. In this paper we take a rather unusual, non-technical approach
and investigate object-oriented programming and the prototype-based programming
field from a purely philosophical viewpoint. Some historical facts and observations
pertaining to objects and prototypes are presented, and conclusions based on those
observations are derived.



2. Classes and classification -- early history

The central concepts behind object-oriented programming -- classes, instances and
classification -- have been of interest to human beings for centuries. The earliest
characterization of classes (types) versus instances was given by Plato over two
thousand years ago [Plato]. Plato made a clear distinction between forms – i.e., stable,
immutable, "ideal" descriptions of things – and particular instances of these forms.
Plato regarded the world of ideas as much more important than the world of
instances, and contended that forms always have an existence that is more real than
the concrete entities and beings in the real world [Plato].

Research into classification (to be precise: biological classification) was continued by
Plato's student Aristotle (384-322 BC) who had an endless interest in understanding
and organizing the world to its smallest details. Whereas Plato was interested mainly
in ideas and "eternal" concepts, Aristotle was the first philosopher interested
especially in natural phenomena. In his works -- over 170 in total -- Aristotle aimed at
providing a comprehensive, detailed taxonomy of all natural things – plants, animals,
minerals, and so on [Aristo]. His classifications were based on the same idea that
underlies object-oriented programming today. A group of objects belongs to the same
category if the objects have the same properties. Thus, categories of objects are
defined by common properties that a group of objects (the extension of the category)
share. New categories can be defined in terms of other categories if the new
categories have at least the same properties as the defining ("genus") categories. The
general rule for classification can be presented as follows:

essence = genus + differentia

In other words, categories are defined in terms of their defining properties and
distinguishing properties. This corresponds precisely to the idea behind traditional
class-based object-oriented programming in which a class is defined in terms of its
superclass (genus) and a set of additional variables and methods (differentia).

Work of Aristotle has lead to the common idea, at least in the West and in many other
cultures, that there is a single correct taxonomy of natural things – animals, plants,
minerals, and so on. Unfortunately, the level of categorization depends heavily who is
doing the categorizing and on what basis. In practice, people have many ways of
making sense of things – and taxonomies of all sorts abound. Yet the idea that there is
a single universal taxonomy of natural things is remarkably persistent [Lak87].

(Aside: Aristotle realized himself that his model has problems and noted that many
objects have "accidental" properties, i.e., properties that are characteristic of the
object under examination but atypical for those kinds of objects in general. Thus, the
actual substance of concepts was defined in terms of two aspects: the essence and the
accidents. This dichotomy has later inspired many researchers, including Fred Brooks
[Bro86].)



3. Later history: a criticism of classification

Aristotle's work on classification did not receive much criticism for a long time.
Categories were regarded as well-understood and unproblematic. They were assumed
to be abstract containers, with things either inside or outside the category. The idea
that categories of things are defined by common properties is not only our everyday
folk theory of what a category is, but it is also the principal technical theory – one
that has been with us for more than two thousand years [Lak87]. Aristotle's ideas have
later stimulated the work of many researchers, including, e.g., the famous
Scandinavian natural scientist Carl von Linné.

The Aristotelian "classical" view was first challenged in the 19th century by the
famous British philosophers W. Whewell and W.S. Jevons. They emphasized that
there are no universal rules to determine what properties to use as a basis of
classification of objects. Furthermore, they argued that classification is not a
mechanical process but it requires creative invention and evaluation. Consequently,
Whewell and Jevons argued that there are no objectively "right" classifications. In
light of this view, the task of constructing general rules for classification seems rather
complicated.

Criticism on classification was continued later in our century by Ludwig Wittgenstein
[Wit53]. Wittgenstein observed that it is difficult to say in advance exactly what
characteristics are essential for a concept. Wittgenstein gave several examples of
seemingly simple concepts that are extremely difficult to define in terms of shared
properties. A classical example is the concept of 'game' [Wit53 §66-67]. Some games
involve mere amusement, like ring-around-the-rosy. In that game there is no
competition -- no winning or losing -- though in other games there is. Some games
involve luck, like board games where a throw of the dice or a draw from a card deck
determines the next move. Others, like chess or water polo, involve skill. Still others,
like poker or monopoly, involve both luck and skill to varying degrees. The number
of players may also vary considerably from one, as in solitaire, to hundreds,
thousands or even millions, as in lottery or horserace betting. (There are also games in
which no players are needed at all, but many people do not regard those as "real"
games.)

Another example of a concept that is hard to define in terms of shared properties is
"work of art". Since no one can really define clear boundaries for what is art and what
isn't, there is no general class "work of art" with shared, common properties. The
definition is subjective and depends heavily on the situation or viewpoint. (Aside: the
famous Russian writer Tolstoy once made it a criterion of value for a work of art that
it should be intelligible to everybody: "The significance of an object lies in its
universal intelligibility").

After presenting a criticism of the classical model, Wittgenstein then defined what
can be seen as the origin of prototype-based programming: the notion of a "family
resemblance". Games do not have any shared, common defining characteristics.
Instead, games share a sort of family resemblance: Baseball is a game because it
resembles the family of activities that people call games. Members of a family
resemble each another in various ways: they may share the same build or the same



facial features, the same hair color, eye color, or temperament, or the like. But there
need be no single collection of properties shared by everyone in a family [Lak87
p.16]. Except for technical terms in mathematics, Wittgenstein maintained that for
most of the concepts, meaning is determined not by definition, but by family
resemblances. Such terms can be defined only in terms of similarity and
representative "prototypes".

4. Towards the prototype theory

Wittgenstein's results have sparked research into so called prototype theory. J.L.
Austin [Aus61], L. Zadeh [Zad65] and F. Lounsbury, among many others, have
studied the area. But it was Eleanor Rosch who introduced the prototype theory in the
mid-1970s [RoM75, RMG76]. Rosch observed that studies by herself and others
demonstrated that categories, in general, have best examples (called "prototypes") and
that all of the specifically human senses play a role in categorization. Thanks to the
pioneering work of Rosch, categorization has become a major field of study within
cognitive psychology.

In her criticism of the classical approach, Rosch focused on two implications of the
classical theory [Lak87]:

          • First, if categories are defined only by properties that all members
share, then no members should be better examples of the category
than any other members.

          • Second, if categories are defined only by properties inherent in the
members, then categories should be independent of the peculiarities
of any beings doing the categorizing; that is, they should not involve
such matters as human neurophysiology, human body movement,
and specific human capacities to perceive, to form mental images, to
learn and remember, to organize the things learned, and to
communicate efficiently.

It can be shown relatively easily that the above mentioned implications are not
typically true when people do classification. For instance, the fact that some instances
are "better" representatives of categories than others can be confirmed simply by
asking people to give examples of 'numbers'. Typically people respond with relatively
simple integers like one, two, five or forty-two rather than -127.798432,
0x12ABFF4C or 12.5-5i, although in principle real, complex, hexadecimal, or
transfinite numbers would be equally good examples of numbers. Thus, integers (and
small integers in particular) are, in a sense, better examples than other kinds of
numbers.

Also, it can be proven rather easily than our background, mental capabilities and
experience play a significant role in the classification process. For instance, some
people living near the equator are claimed to be unable to distinguish between snow
and ice, whereas the Eskimos have numerous words for describing different types of
snow. Dani people of New Guinea have only two basic color terms: mili (dark-cool)



and mola (light-warm) that cover the entire spectrum, and have great difficulties in
differentiating between colors in more detail [Lak87]. A professional limnologist
might be able to identify several hundreds or even thousands of different animals
living in the water, whereas a layman might recognize only a few dozen. Also,
classifications by persons who have substantial expertise in a certain area are typically
much more refined than those created by non-experienced people (conversely, people
with little expertise easily make mistakes such as classifying whales and dolphins as
fish, and so on).

In general, cognitive observations such as those above revealed some inherent flaws
in the traditional classical model, and formed the basis for research leading into the
prototype theory presented by Rosch and others. The essential results of prototype
theory leading up to the cognitive models approach can be summarized as follows
[Lak87 p.56]:

          • Some categories, like tall man or red, are graded; that is, they have
inherent degrees of membership, fuzzy boundaries, and central
members whose degree of membership (on a scale from zero to one)
is one.

          • Other categories, like bird, have clear boundaries; but within those
boundaries there are graded prototype effects – some category
members are better examples of the category than others.

          • Categories are not organized just in terms of simple taxonomic
hierarchies. Instead, categories "in the middle" of a hierarchy are the
most basic, relative to a variety of psychological criteria. Most
knowledge is organized at this level.

          • The basic level depends upon perceived part-whole structure and
corresponding knowledge about how the parts function relative to the
whole.

          • Categories are organized into systems with contrasting elements.

          • Human categories are not objectively "in the world", external to
human beings. Many categories are embodied, and defined
jointly by the external physical world, human biology, the human
mind, plus cultural considerations.

It has also been shown that in many situations people perform classification on an
almost totally ad hoc basis, creating unconventional and previously non-existing
structures on the fly for some immediate purpose. Examples of such categories
include

• what to get for a birthday present,
• what to do for entertainment on a weekend, and
• things to be taken from one's home during a fire.



For a detailed discussion on the cognitive and other observations and experiments that
have lead to the development of the prototype theory, the reader is referred to the
excellent book "Women, fire, and dangerous things" by George Lakoff [Lak87].

5. Implications on programming languages and methods

Albeit rather philosophical, the discussion above has some important implications on
the world of programming. In this section we present some thoughts and
consequences that the theories of classification have on programming languages and
software development methods. Note that classification has been studied rather
actively in the field of artificial intelligence (see, e.g. [Bra83] and [Tou86]), but
surprisingly, many object-oriented software designers seem to be almost completely
unaware of the conceptual and philosophical background that underlies object-
oriented programming.

Recognizing the limited modeling capabilities of OO. As already mentioned earlier
in the paper, the programming models used in most object-oriented programming
languages today are surprisingly similar to the Aristotelian classical model of the
world. For instance, object-oriented languages typically assume that new classes are
defined in terms of shared properties, and that instances of a class always have an
identical set of properties. Furthermore, the class inheritance model used in most
object-oriented languages closely resembles the Aristotelian way of defining new
classes (categories) in terms of existing genealogical parents. The inheritance
hierarchies characteristic of object-oriented programs also bear an intimate
resemblance to the Aristotelian idea of "single correct taxonomy of all natural things".

In philosophy it has already been shown that the Aristotelian classical model has
severe limitations when it comes to the modeling of real world phenomena. Taking
into account the conceptual similarity of the classical model and the current object-
oriented paradigm, it is therefore fairly obvious that object-oriented languages of
today have pretty much the same shortcomings when it comes to modeling the real
world. This is exemplified by the fact that there are many concepts and domains that
are of interest to us but that cannot naturally be modeled in terms of shared properties.
Examples of such "objects" include things like traffic jam, photon, water, ozone hole
or greenhouse effect. If we want to use the current object-oriented paradigm to model
concepts like these, we will have to explicitly resort to discrete, stochastic or
probabilistic simulation models in which the actual problem domain is first converted
into a form in which objects with shared properties exist. But the actual concepts
themselves simply cannot be defined in terms of shared properties.

In most cases the limited modeling capabilities of the current object-oriented
paradigm is not really a problem, since it usually suffices to have "good enough"
models that describe the problem domain in a sufficiently rich level of detail. Also,
the majority of business applications are such that they can fairly easily be
represented with concepts that are defined in terms of shared properties. Furthermore,
despite the inherent limitations, the modeling capabilities of the object-oriented
paradigm are still much better than those of the other well-known programming
paradigms. Consequently, the realization that object-oriented programming is not



really capable of modeling the real world is more an observation than a real problem.
But what is important is that we should steer clear of claims such as "object-oriented
programs directly reflect the real world" that have been surprisingly common in the
past, at least in the OO marketing material.

No optimum class hierarchies. Another implication that arises from the Aristotelian
classical model and its adoption in current object-oriented programming languages is
the fact that there are no "optimum" class hierarchies. This is easily seen in everyday
design and implementation of object-oriented systems. In many situations a class
hierarchy that is very natural and intuitive from the conceptual point of view is not
the most reusable, extensible, or time- or space-efficient one; the most reusable or
extensible libraries are not necessarily efficient or conceptually elegant; or, the most
efficient libraries may lack both the conceptual elegance and extensibility. In general,
the design of a good class hierarchy typically involves trade-offs in various regards.
Cook's paper on the redesign of the Smalltalk-80 class library serves as an interesting
example of this phenomenon [Coo92]. Also, the mixin style of programming [BrC90]
often leads to highly reusable libraries at the cost of reduced conceptual clarity.

An implication of the fact that there are no optimum class hierarchies is that the
designers of object-oriented software should always be prepared for change. No
matter how well designed the class library is, requirements may change in such a
manner that substantial changes in the library are needed. Consequently, there is a
clear need for methods and tools that allow class libraries to be easily transformed
from one form to another. Such methods and tools have been investigated by several
researchers, including Bergstein [Ber91], Casais [Cas92] and Opdyke [Opd92,
OpJ93].

Consensus-driven design and "good enough" models. The fact that there are no
optimum classifications and therefore no optimum class hierarchies either leads us to
the observation that there is no such thing as a "perfect" design. In other words, when
designing object-oriented software, we should not spend too much time on trying to
come up with a solution that would meet all the desired requirements and criteria.
Rather, the design phase should be more like a consensus-oriented or consensus-
driven process in which a group of designers aims at reaching a sufficient, or "good
enough" model of the problem domain. A central goal of this process is to come up
with a common vocabulary that will assist the designers in subsequently
communicating about the problem domain and discussing about their designs more
efficiently. This is far more important than the perfectness of the design. Also, it
should be kept in mind that the requirements are likely to change and that iteration is
typically needed (discussed below). Thus, "good enough" is usually enough, and
spending additional time on design would just lead to work that could potentially be
wasted. (Of course, deciding what is "good enough" is often very hard; Ed Yourdon
has provided interesting insights into the topic in his recent paper on "good enough
software" [You96]).

Basic classes and the need for iteration. One of the central results of the prototype
theory presented by Rosch and others [RoM75, RMG76] is the observation that not
all concepts and categories are equal. Rather, there are categories that are more
"basic" than others and objects that are "better" representatives of categories than



other objects. These "basic" categories (classes) and "best" representative objects are
those that are usually found first, whereas the more general and/or specific classes can
only be deduced later when more experience from the problem domain has been
gathered.

An interesting observation is that when categories are organized into taxonomic
hierarchies, such as class hierarchies in object-oriented programming, the basic
classes typically end up in the middle of the class hierarchy. In contrast, those classes
that are at the top (root) or at the bottom (leaves) of the hierarchies are typically of
less interest, either because they are overly generic or overly specific for the purpose
of examination.

However, the implementation of an object-oriented class hierarchy always proceeds
(technically) from top to bottom, i.e., superclasses must exist before their subclasses.
Therefore, there is an inherent conflict between the classification process and the
implementation of an object-oriented class hierarchy: the generic, more abstract
classes can only be found when a substantial amount of expertise on the problem
domain has been gathered. If the implementation of a class hierarchy is started a
priori, i.e., before a sufficient level of expertise has been reached, substantial iteration
in the implementation of the library is inevitable, since later experience is bound to
reveal generalizations and new abstractions that will necessitate changes in the
superclasses. Alternatively, we could try to postpone the implementation until the
"final" classification of the problem domain has been reached, but since we already
know that perfect classification is rarely possible, this will not solve the problems in
the long run.

In general, by utilizing the Aristotelian philosophy and prototype theory, we can
prove that the construction of object-oriented class libraries is an inherently iterative
process. This fact has been presented informally by several researchers and
practitioners in the area of object-oriented programming. For instance, Johnson and
Foote [JoF88] have argued that abstractions are usually discovered by generalizing
from a number of concrete examples and that the abstraction process is likely to
succeed much better if we have a lot of experience with the problem domain. That is
the reason why it is typically much easier to build good class hierarchies for graphical
windowing systems and parsers than, e.g., nuclear plant or solar system simulation. In
general, useful abstractions are usually designed from the bottom up, i.e., they are
discovered rather than invented, and will usually undergo a number of iterations until
they will become conceptually and technically satisfactory. The less experience we
have with the domain, the more iteration is needed.

6. Prototype theory and prototype-based object-oriented programming

Not all object-oriented programming languages are class-based. There is an
interesting category of object-oriented languages in which there are no classes at all.
In this prototype-based object-oriented programming model, all programming is done
in terms of concrete, directly manipulatable objects that are often referred to as
prototypes. These prototypical objects resemble the instances in class-based
languages, except that prototypical objects are more flexible in several regards. For



instance, unlike in class-based languages in which the structure of an instance is
dictated by its class, in prototype-based languages it is usually possible to add or
remove methods and variables at the level of individual objects. Other differences
include that in prototype-based languages object creation usually takes place by
copying, and that inheritance is replaced by some other, less class-centered
mechanism. Self [UnS87], for instance, uses a mechanism called delegation [Lie86]
which allows objects to forward messages to other objects in case the current object
does not know how to respond to the given message, thereby supporting the essence
of inheritance: incremental modification [Coo89]. Kevo [Tai92, Tai93] uses a
mechanism called concatenation to reach the same goal.

Prototype-based languages are conceptually elegant and possess many other
characteristics that make them appealing. These languages are also seemingly closer
to the prototype theory presented by cognitive psychologists and philosophers. For
instance, the ability to modify and evolve objects at the level of individual objects
reduces the need for a priori classification and encourages a more iterative
programming and design style. In general, when working with prototypes, one
typically chooses not to categorize, but to exploit alikeness. Rather than dealing with
abstract descriptions of concepts (intensions), the designer is faced with concrete
realizations of those concepts. Consequently, design is driven by evaluation in the
context of examples: designers run their solutions to evaluate them in the context of
some input to the program.

The change of focus in the design phase raises an interesting question: do prototype-
based object-oriented languages help overcome the limitations of the Aristotelian
tradition that constrains the modeling capabilities of the current class-based object-
oriented languages? Unfortunately, this is not really the case. Most prototype-based
languages of today are motivated by relatively technical matters. For instance,
prototypes are commonly used for reaching better reusability through increased
sharing of properties and more dynamic bindings of objects, or for providing better
support for experimental programming [UnS87]. In contrast, they do not usually take
into account the conceptual modeling side, let alone pay any attention to the
philosophical basis that underlies object-oriented programming. In a way, thus far the
developers of prototype-based object-oriented programming languages seem to have
been even more ignorant to these underlying conceptual and philosophical issues
than, e.g., the Scandinavian inventors of the class-based object-oriented paradigm
(see, e.g. [BDM73, Knu88]).

Kevo -- a language motivated by family resemblances. Perhaps the only object-
oriented language that comes closer to the family resemblance model presented by
philosophers and cognitive psychologists is Kevo [Tai92, SLS94]. Kevo differs from
most other prototype-based object-oriented languages in the respect that it does not
support inheritance or delegation in the traditional way. Instead of these and other
mechanisms that put a heavy emphasis on sharing and shared properties, Kevo objects
are logically stand-alone and typically have no shared properties with each other.
(Note that at the implementation level Kevo uses sharing extensively in order to
conserve memory, but this is fully transparent to the programmer.) New objects are
created by copying, and the essence of inheritance, incremental modification, is
captured by providing a set of module operations that allow the objects to be



manipulated flexibly. Late binding is used to ensure that methods defined earlier can
be overridden to extend existing behavior in an object-oriented manner.

In order to make it possible to perform modifications to objects not only at the level
of individual objects, but also per group, Kevo uses a notion of object (clone) family.
An object family is a system-maintained group of objects who are considered to be
similar. When objects are modified, the system implicitly moves objects from one
family to another, or creates new families as necessary. For instance, when adding
new properties to a window object, a new family of objects is created, unless another
object with identical properties already exist. Conversely, if the added properties are
later removed from the window object, the object will again return to its earlier
family (provided that the family still exists). As the criterion of similarity, object
interface compatibility is used, meaning that objects are considered to be similar if
they have the same external interface/signature. In an ideal situation, object
comparison should be based on behavioral compatibility, i.e., ensuring that objects
react to external stimuli identically, but in practice coming up with an algorithm that
could determine 100% surely and efficiently whether two objects are behaviorally
compatible is impossible.

Object families in Kevo have a conceptual relation to family resemblances presented
by philosophers. When combined with the notion of stand-alone objects and the
reduced focus on shared properties, this naturally leads to a design and programming
style in which advance classification and categorization have a lesser role. Yet even
Kevo is still far away from the model presented by prototype theorists who argue that
in modeling and classification subjective perceptions have a central role. There is
some recent work in the area of subject-oriented programming that aims at taking into
account the subjective factors in object-oriented design, but at this point this work is
still mostly preliminary (see, e.g., [HaO93]).

A Macintosh implementation of Kevo is available freely from address
“ ftp://cs.uta.fi/pub/kevo” . Detailed information on Kevo is provided in the author's
doctoral thesis [Tai93] that is also available electronically from address
“ ftp://cs.uta.fi/pub/atps” .

6. Conclusion

In this paper we have given a short overview of the historical and philosophical
background of object-oriented programming, and examined the implications of these
background issues on current object-oriented programming languages and methods.
We recognized Aristotle as the "conceptual father" of class-based object-oriented
programming, whereas the work of Wittgenstein has served as an inspiration for the
alternative prototype-based approach. It was noted that in philosophy and cognitive
psychology, the Aristotelian "classical" model has been abandoned a long time ago,
whereas in object-oriented programming that model is still the prevalent one. This is
not necessarily a problem, however, since most of the typical business applications
can be modeled fairly well even with the limited classical model, especially if the
designers are aware of the limitations of the classical model. It was also pointed out
that current prototype-based object-oriented languages are poorly developed when it



comes to taking into account the conceptual and philosophical benefits of the
prototype-based approach, and that a lot of possibilities for future research in this area
remain.
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