Classes vs. Prototypes
Some Philosophical and Historical Observations

Antero Taivalsaari
Nokia Research Center
P.O. Box 45, 00211 Helsinki
FINLAND
taivalsa@research.nokia.com

April 22, 1996

1. Introduction

“Objects in the real world have only onéntipin common
-- they are all different.

In the recent years an alternative to the traditional class-basedobject-oriented
languagemodel has emerged.In this prototype-based paradigm [Bor86, Lie86,
LTP86, Ste87, UnS87SLU88, DMC92, Bla94] there are no classesRather,new
kinds of objects are formed more directly by composingconcrete, full-fledged
objects,which are often referredto as prototypes. When comparedto class-based
languagesprototype-basethnguagesre conceptuallysimpler,and havemanyother
characteristicghat make them suitable especiallyto the developmentof evolving,
exploratory and distributed software systems.

The distinction betweenclass-basednd prototype-basedystemsreflects a long-
lasting philosophical dispute concerningthe representationof abstractions.Plato
viewed forms -- stable, abstract,"ideal” descriptionsof things -- as having an
existencemore real than instancesof thosethings in the real world. Class-based
languagessuch as Smalltalk, C++ or Simula are Platonicin their explicit use of
classego represensimilarity amongcollectionsof objects.Prototype-basedystems
suchas Self [UnS87], Omega[Bla91, Bla94],Kevo [Tai92, Tai93], GlyphicScript
[Gly94] and NewtonScript [SLS94] represent another view of the world, in which one
doesnot rely so muchon advancecategorizatiorandclassification but rathertries to
make the conceptsin the problem domain as tangible and intuitive as possible.A
typical argument in favor of prototypes is that people seem to be a lot better at dealing
with specificexampledirst, thengeneralizingirom them,than theyare at absorbing
general abstract principles first and later applying them in particular cases.

Prototypesgive rise to a broad spectrumof interestingtechnical, conceptualand

philosophicalissues.n this paperwe take a ratherunusual,non-technicalapproach
and investigateobject-orientedprogrammingand the prototype-basegrogramming
field from a purely philosophicalviewpoint. Somehistorical facts and observations
pertainingto objectsand prototypesare presentedand conclusionsbasedon those
observations are derived.

2. Classes and classification -- early history

The central conceptsbehind object-orientedprogramming-- classesjnstancesand
classification-- have beerof interestto humanbeingsfor centuries.The earliest
characterizationof classes(types) versusinstanceswas given by Plato over two
thousand years ago [Plato]. Plato maadeardistinctionbetweerforms —i.e., stable,
immutable,"ideal" descriptionsof things— and particularinstances of theseforms.
Plato regardedthe world of ideas as much more important than the world of
instancesand contendedhat forms alwayshavean existencethatis more real than
the concrete entities and beings in the real world [Plato].

Researclinto classification(to be precise:biological classification)wascontinuedby
Plato'sstudentAristotle (384-322BC) who had an endlessnterestin understanding
andorganizingthe world to its smallestdetails.WhereasPlatowasinterestedmainly
in ideas and "eternal” concepts, Aristotle was the first philosopher interested
especially in natural phenomena. In his works -- over 170 in total -- Aristiotledat
providing a comprehensivejetailedtaxonomyof all naturalthings— plants,animals,
minerals,and so on [Aristo]. His classificationswere basedon the sameidea that
underliesobject-orientegorogrammingoday.A groupof objectsbelongsto the same
categoryif the objects have the same properties.Thus, categoriesof objects are
definedby common properties thata groupof objects(the extensionof the category)
share. New categoriescan be defined in terms of other categoriesif the new
categoriehaveat leastthe samepropertiesasthe defining ("genus”)categoriesThe
general rule for classification can be presented as follows:

essence = genus + differentia

In other words, categoriesare defined in terms of their defining propertiesand
distinguishing properties.This correspondgreciselyto the idea behind traditional
class-baseabject-orientedorogrammingin which a classis definedin termsof its
superclass (genus) and a set of additional variables and methods (differentia).

Work of Aristotle has lead to the common idea, at leagteWestandin manyother
cultures,that thereis a single correcttaxonomyof naturalthings— animals,plants,
minerals, and so on. Unfortunately, the levktategorizatiordepend$eavilywhois
doing the categorizingand on what basis.In practice, people have many ways of
making sense of thingsand taxonomies of all sorts abouivet the ideathatthereis
a single universal taxonomy of natural things is remarkably persistent [Lak87].

(Aside: Aristotle realizedhimself that his model has problemsand notedthat many
objects have "accidental” properties,i.e., propertiesthat are characteristicof the
objectunderexaminatiornbut atypicalfor thosekinds of objectsin general.Thus,the
actualsubstancef conceptsvasdefinedin termsof two aspectsthe essence andthe
accidents. Thisdichotomyhaslaterinspiredmanyresearchersncluding FredBrooks
[Bro86].)

3. Later history: a criticism of classification

Aristotle's work on classificationdid not receive much criticism for a long time.
Categoriesvereregardedaswell-understoocandunproblematicThey were assumed

to be abstractcontainerswith things eitherinside or outsidethe category.The idea

that categorieof thingsare definedby commonpropertiesis not only our everyday

folk theoryof what a categoryis, but it is alsothe principal technicaltheory — one

that has been with us for more than two thousand years [Lak87]. Aristotle's ideas have
later stimulated the work of many researchers,including, e.g., the famous
Scandinavian natural scientist Carl von Linné.

The Aristotelian "classical” view was first challengedin the 19th century by the

famous British philosopherswW. Whewell and W.S. Jevons. They emphasizedhat

there are no universal rules to determinewhat propertiesto use as a basis of

classification of objects. Furthermore, they argued that classification is not a

mechanicalprocessbut it requirescreativeinvention and evaluation.Consequently,
Whewell and Jevonsarguedthat there are no objectively "right" classifications.In

light of this view, the taskof constructinggeneralrulesfor classificationseemgather
complicated.

Criticism on classificationwas continuedater in our centuryby Ludwig Wittgenstein
[Wit53]. Wittgensteinobservedthat it is difficult to say in advanceexactly what
characteristicsare essentialfor a concept. Wittgenstein gave several examplesof
seeminglysimple conceptsthat are extremelydifficult to definein termsof shared
propertiesA classicalexampleis the conceptof ‘game[Wit53 §66-67]. Somegames
involve mere amusement,like ring-around-the-rosy.In that game there is no
competition-- no winning or losing -- thoughin othergamesthereis. Somegames
involve luck, like boardgameswherea throw of the dice or a drawfrom a carddeck
determineghe nextmove.Others,like chessor waterpolo, involve skill. Still others,
like pokeror monopoly,involve bothluck andskill to varying degreesThe number
of players may also vary considerablyfrom one, as in solitaire, to hundreds,
thousands or even millions, as in lottery or horserace betting. (There are alsargames
which no playersare neededat all, but many peopledo not regardthoseas "real”
games.)

Another examplef a conceptthatis hardto definein termsof sharedpropertiesis
"work of art". Since no one can really define clear boundariewffiaitis art andwhat
isn't, thereis no generalclass"work of art" with shared,commonproperties.The
definition is subjectiveanddependseavily on the situationor viewpoint. (Aside: the
famousRussianwriter Tolstoy oncemadeit a criterion of valuefor awork of art that
it should be intelligible to everybody:"The significanceof an object lies in its
universal intelligibility™).

After presentinga criticism of the classicalmodel, Wittgensteinthen defined what
can be seenasthe origin of prototype-basegrogramming:the notion of a "family
resemblance”Gamesdo not have any shared,common defining characteristics.
Instead,gamessharea sort of family resemblance: Baseballis a game becauset
resemblesthe family of activities that people call games.Membersof a family
resembleeachanotherin variousways: they may sharethe samebuild or the same

facial featuresthe samehair color, eyecolor, or temperamentor the like. But there
needbe no single collection of propertiessharedby everyonein a family [Lak87
p.16]. Exceptfor technicaltermsin mathematicsWittgensteinmaintainedthat for
most of the concepts,meaningis determinednot by definition, but by family
resemblances.Such terms can be defined only in terms of similarity and
representative "prototypes”.

4. Towards the prototype theory

Wittgenstein'sresults have sparkedresearchinto so called prototype theory. J.L.
Austin [Aus6l], L. Zadeh[Zad65] and F. Lounsbury,among many others, have
studied the area. But it w&eanor Rosch who introducedthe prototypetheoryin the
mid-1970s[RoM75, RMG76]. Rosch observedthat studiesby herself and others
demonstrated thatategoriesin generalhavebest examples (called"prototypes™)and
that all of the specificallyhumansenseglay a role in categorizationThanksto the
pioneeringwork of Rosch,categorizatiorhasbecomea major field of study within
cognitive psychology.

In her criticism of the classicalapproachRoschfocusedon two implicationsof the
classical theory [Lak87]:

» First, if categories are defined only by properties that all members
share, then no members should be better examples of the category
than any other members.

» Second, if categories are defined only by properties inherent in the
members, then categories should be independent of the peculiarities
of any beings doing the categorizing; that is, they should not involve
such matters as human neurggiblogy, human body movement,

and specific human capacities to perceive, to form mental images, to
learn and remember, to organize the things learned, and to
communicate efficiently.

It can be shown relatively easily that the above mentionedimplications are not

typically true whenpeopledo classification For instancethe factthatsomeinstances
are "better" representative®f categoriesthan others can be confirmed simply by

asking people to give examples'numbers'Typically peoplerespondwith relatively

simple integers like one, two, five or forty-two rather than -127.798432,
0x12ABFF4C or 12.5-5i, although in principle real, complex, hexadecimal,or

transfinitenumberswvould be equallygoodexamplesof numbersThus,integers(and

small integersin particular) are, in a sense,better examplesthan other kinds of

numbers.

Also, it can be proven rather easily than our background,mental capabilitiesand
experienceplay a significantrole in the classificationprocess.For instance,some
peopleliving nearthe equatorare claimedto be unableto distinguishbetweensnow
andice, whereaghe Eskimoshavenumerouswordsfor describingdifferent typesof
snow.Dani peopleof New Guineahaveonly two basiccolor terms:mili (dark-cool)

and mola (light-warm) that cover the entire spectrum,and have greatdifficulties in
differentiating betweencolors in more detail [Lak87]. A professionallimnologist
might be able to identify severalhundredsor eventhousandsof different animals
living in the water, whereasa layman might recognizeonly a few dozen.Also,
classifications by persons who have substantial expertise in a Gdaaretypically
muchmorerefinedthanthosecreatedoy non-experiencegeople(conversely people
with little expertiseeasily make mistakessuchas classifyingwhalesand dolphinsas
fish, and so on).

In general,cognitive observationsuchasthoseaboverevealedsomeinherentflaws
in the traditional classicalmodel, and formed the basisfor researcHeadinginto the
prototypetheory presentedoy Roschand others.The essentialresultsof prototype
theory leadingup to the cognitive modelsapproachcan be summarizedas follows
[Lak87 p.56]:

* Some categories, like tall man or red, are graded; that is, they have
inherent degrees of membership, fuzzy boundaries, and central
members whose degree of membership (on a scale from zero to one)
is one.

» Other categories, like bird, have clear boundaries; but within those
boundaries there are graded protetyfects- some category
members are better examples of the category than others.

» Categories are not organized just in terms of simple taxonomic
hierarchies. Instead, categories "in the middle" of a hierarchy are the
most basic, relative to a variety of psychological criteria. Most
knowledge is organized at this level.

* The basic level depends upon perceived part-whole structure and
corresponding knowledge about how the parts function relative to the
whole.

» Categries are organized into systems with contrasting elements.

* Human categories are not objectively "in the world", external to
human beings. Many categories are embodied, and defined

jointly by the external physical world, human biology, the human
mind, plus cultural considerations.

It hasalso beenshownthat in many situationspeople perform classificationon an
almost totally ad hoc basis, creating unconventionaland previously non-existing
structureson the fly for some immediate purpose.Examplesof such categories
include

» what to get for a birthday present,
» what to do for entertainment on a weekend, and
» things to be taken from one's home during a fire.

For a detailed discussion on the cognitive and athservationandexperimentghat
haveleadto the developmenbf the prototypetheory, the readeris referredto the
excellent book "Women, fire, and dangerous things" by George Lakoff [Lak87].

5. Implications on programming languages and methods

Albeit ratherphilosophical the discussiorabovehassomeimportantimplicationson
the world of programming. In this section we present some thoughts and
consequencethat the theoriesof classificationhaveon programminglanguagesand
software developmentmethods. Note that classification has been studied rather
actively in the field of artificial intelligence (see,e.g. [Bra83] and [Tou86]), but
surprisingly,many object-orientedsoftwaredesignersseemto be almostcompletely
unaware of the conceptualand philosophical backgroundthat underlies object-
oriented programming.

Recognizing the limited modeling capabilities of OO. As alreadymentionedearlier
in the paper,the programmingmodelsusedin most object-orientedprogramming
languagedoday are surprisingly similar to the Aristotelian classicalmodel of the
world. For instance object-orientedanguagegypically assumehat new classesare
definedin termsof sharedproperties,and that instancesof a classalwayshavean
identical set of properties.Furthermore,the classinheritancemodel usedin most
object-orientedlanguagesclosely resemblesthe Aristotelian way of defining new
classes(categories)in terms of existing genealogical parents. The inheritance
hierarchies characteristic of object-oriented programs also bear an intimate
resemblance to the Aristotelian idea of "single correct taxonomy of all natural things".

In philosophyit has already beenshown that the Aristotelian classicalmodel has
severelimitations whenit comesto the modelingof real world phenomenaTaking
into accountthe conceptuakimilarity of the classicalmodel and the currentobject-
oriented paradigm,it is thereforefairly obvious that object-orientedlanguagesof
today havepretty muchthe sameshortcomingsvhenit comesto modelingthe real
world. This is exemplifiedby the fact thatthereare manyconceptsanddomainsthat
are of interest to us but that cannot naturally be modeled in terms of shared properties.
Examplesof such"objects"includethingslike traffic jam, photon,water,o0zonehole
or greenhouseffect.If we wantto usethe currentobject-orientegparadigmto model
conceptslike these,we will have to explicitly resort to discrete, stochasticor
probabilisticsimulationmodelsin which the actualproblemdomainis first converted
into a form in which objectswith sharedpropertiesexist. But the actual concepts
themselves simply cannot be defined in terms of shared properties.

In most casesthe limited modeling capabilities of the current object-oriented
paradigmis not really a problem, sinceit usually sufficesto have "good enough”
modelsthat describethe problemdomainin a sufficiently rich level of detail. Also,
the majority of businessapplications are such that they can fairly easily be
representeavith conceptghataredefinedin termsof sharedoropertiesFurthermore,
despite the inherent limitations, the modeling capabilities of the object-oriented
paradigmare still much better than those of the other well-known programming
paradigms.Consequentlythe realization that object-orientedprogrammingis not

really capableof modelingtherealworld is morean observatiorthana real problem.
But whatis importantis thatwe shouldsteerclearof claimssuchas"object-oriented
programsdirectly reflect the real world" that have beersurprisinglycommonin the
past, at least in the OO marketing material.

No optimum class hierarchies. Anotherimplication thatarisesfrom the Aristotelian
classicalmodelandits adoptionin currentobject-orientedprogramminglanguagess

the fact thatthereareno "optimum® classhierarchiesThis is easilyseenin everyday
designand implementationof object-orientedsystems.In many situationsa class
hierarchythat is very naturalandintuitive from the conceptualpoint of view is not
the most reusable extensible,or time- or space-efficienone; the most reusableor

extensibleibraries are not necessarilyefficient or conceptuallyelegant;or, the most
efficient librariesmay lack boththe conceptuakleganceandextensibility.In general,
the designof a good classhierarchytypically involvestrade-offsin variousregards.
Cook'spaperon the redesignof the Smalltalk-80classlibrary servesasaninteresting
example of this phenomenon [Coo092]so, the mixin style of programmingBrC90]

often leads to highly reusable libraries at the cost of reduced conceptual clarity.

An implication of the fact that there are no optimum class hierarchiesis that the
designersof object-orientedsoftware should always be preparedfor change.No
matter how well designedthe classlibrary is, requirementsamay changein sucha
mannerthat substantialchangesn the library are needed.Consequentlythereis a
clear needfor methodsandtools that allow classlibraries to be easily transformed
from oneform to another.Suchmethodsandtools have beennvestigatedby several
researchersjncluding Bergstein [Ber91], Casais [Cas92] and Opdyke [Opd92,
OpJas].

Consensus-driven design and "good enough” models. The fact that there are no
optimumclassificationsandthereforeno optimum classhierarchiesitherleadsus to
the observatiorthatthereis no suchthing asa "perfect" design.In otherwords,when
designingobject-orientedsoftware,we shouldnot spendtoo muchtime on trying to
comeup with a solution that would meetall the desiredrequirementsand criteria.
Rather,the design phaseshould be more like a consensus-oriented or consensus-
driven processn which a group of designersaimsat reachinga sufficient, or "good
enough"modelof the problemdomain.A centralgoal of this processs to comeup
with a common vocabulary that will assist the designersin subsequently
communicatingaboutthe problem domainand discussingabouttheir designsmore
efficiently. This is far more important than the perfectnesof the design.Also, it
shouldbe keptin mind thatthe requirementsarelikely to changeandthatiterationis
typically needed(discussedbelow). Thus, "good enough™is usually enough,and
spendingadditionaltime on designwould just leadto work that could potentially be
wasted.(Of course,decidingwhatis "good enough'is often very hard; Ed Yourdon
hasprovidedinterestinginsightsinto the topic in his recentpaperon "good enough
software" [You96]).

Basic classes and the need for iteration. Oneof the centralresultsof the prototype
theory presentedy Roschand others|RoM75, RMG76] is the observationthat not
all conceptsand categoriesare equal. Rather, there are categoriesthat are more
"basic" than othersand objectsthat are "better" representative®f categoriesthan

otherobjects.These"basic" categorieqclassesiand "best" representative@bjectsare
those that are usually found first, whereas the more gemedébrspecificclassexan
only be deducedlater when moreexperiencefrom the problem domain has been
gathered.

An interestingobservationis that when categoriesare organizedinto taxonomic
hierarchies,such as class hierarchiesin object-orientedprogramming,the basic
classegypically endup in the middle of the class hierarchy. In contrastthoseclasses
that are at the top (root) or at the bottom (leaves)of the hierarchiesare typically of
lessinterest,eitherbecausehey are overly genericor overly specificfor the purpose
of examination.

However,the implementationof an object-orientedclasshierarchyalwaysproceeds
(technically)from top to bottom,i.e., superclassesiustexist beforetheir subclasses.
Therefore,there is an inherentconflict betweenthe classificationprocessand the
implementationof an object-orientedclass hierarchy: the generic, more abstract
classescan only be found when a substantialamountof expertiseon the problem
domain has beengathered.If the implementationof a classhierarchyis starteda
priori, i.e., before a sufficient level @xpertisehasbeenreachedsubstantialteration
in the implementationof the library is inevitable,sincelater experiencdas boundto
reveal generalizationsand new abstractionsthat will necessitatechangesin the
superclassesAlternatively, we could try to postponethe implementationuntil the
"final" classificationof the problemdomainhasbeenreachedput sincewe already
know that perfectclassificationis rarely possible this will not solvethe problemsin
the long run.

In general,by utilizing the Aristotelian philosophy and prototype theory, we can
provethatthe constructionof object-orientectlasslibrariesis aninherently iterative

process. This fact has been presentedinformally by several researchersand
practitionersin the areaof object-orientedorogramming.For instance Johnsonand
Foote [JoF88] have arguedthat abstractionsare usually discoveredby generalizing
from a numberof concreteexamplesand that the abstractionprocessis likely to

succeednuchbetterif we havea lot of experiencewith the problemdomain.Thatis

the reason why it is typically muaasierto build goodclasshierarchiedor graphical
windowing systems and parsers than, e.g., nugleat or solarsystemsimulation.In

general,useful abstractionsare usually designedfrom the bottom up, i.e., they are
discoveredatherthaninvented,andwill usuallyundergoa numberof iterationsuntil

they will becomeconceptuallyand technically satisfactory.The less experiencewe
have with the domain, the more iteration is needed.

6. Prototype theory and prototype-based object-oriented programming

Not all object-oriented programming languagesare class-based.There is an
interestingcategoryof object-orientedanguagesn which thereare no classesat all.
In this prototype-based object-oriented programming model,all programmings done
in terms of concrete,directly manipulatableobjectsthat are often referredto as
prototypes. These prototypical objects resemble the instancesin class-based
languagesexceptthat prototypical objectsare more flexible in severalregards.For

instance,unlike in class-basedanguagesn which the structureof an instanceis
dictatedby its class,in prototype-basedanguagest is usually possibleto add or
remove methodsand variablesat the level of individual objects.Other differences
include that in prototype-basedanguagesobject creation usually takes place by
copying, and that inheritance is replaced by some other, less class-centered
mechanismSelf [UnS87], for instanceusesa mechanisntalled delegation [Lie86]
which allows objectsto forward message$o otherobjectsin casethe currentobject
doesnot know how to respondto the given messagetherebysupportingthe essence
of inheritance: incremental modification [Co089]. Kevo [Tai92, Tai93] uses a
mechanism calledoncatenation to reach the same goal.

Prototype-basedlanguages are conceptually elegant and possessmany other
characteristicshat makethemappealing.Theselanguagesare also seeminglycloser
to the prototypetheory presentedoy cognitive psychologistsand philosophersFor

instance the ability to modify and evolve objectsat the level of individual objects
reducesthe need for a priori classification and encouragesa more iterative
programming and design style. In general, when working with prototypes,one
typically choosesot to categorizeput to exploit alikenessRatherthandealingwith

abstractdescriptionsof concepts(intensions),the designeris faced with concrete
realizationsof thoseconcepts.Consequentlydesignis driven by evaluationin the
contextof examplesdesignergun their solutionsto evaluatethemin the contextof

some input to the program.

The changeof focusin the designphaseraisesan interestingquestion:do prototype-

basedobject-orientedlanguageshelp overcomethe limitations of the Aristotelian

tradition that constrainsthe modeling capabilitiesof the current class-baseabject-

orientedlanguages®nfortunately,this is not really the case.Most prototype-based
languagesof today are motivated by relatively technical matters. For instance,
prototypesare commonly used for reaching better reusability through increased
sharingof propertiesand more dynamichbindingsof objects,or for providing better

supportfor experimentaprogrammingUnS87].In contrastthey do not usuallytake

into accountthe conceptualmodeling side, let alone pay any attention to the

philosophicabasisthatunderliesobject-orientegorogrammingln away, thusfar the

developersof prototype-basewbject-orientedporogramminglanguageseemto have

been evermore ignorantto theseunderlying conceptualand philosophicalissues
than, e.g., the Scandinaviannventors of the class-baseabject-orientedparadigm

(see, e.g. [BDM73, Knu88]).

Kevo -- a language motivated by family resemblances. Perhapshe only object-
orientedlanguagethat comescloserto the family resemblancenodel presentecby
philosophersand cognitive psychologistss Kevo [Tai92, SLS94].Kevo differs from
most other prototype-baseabject-orientedanguagesn the respectthat it doesnot
supportinheritanceor delegationin the traditional way. Insteadof theseand other
mechanisms that put a heavy emphasis on sharinghamddpropertiesKevo objects
are logically stand-aloneand typically have no sharedpropertieswith eachother.
(Note that at the implementationlevel Kevo usessharing extensivelyin order to
conservememory,but this is fully transparento the programmer.)New objectsare
createdby copying, and the essenceof inheritance,incrementalmodification, is
capturedby providing a set of module operations that allow the objectsto be

manipulatediexibly. Late bindingis usedto ensurethat methodsdefinedearliercan
be overridden to extend existing behavior in an object-oriented manner.

In orderto makeit possibleto perform modificationsto objectsnot only at the level

of individual objects,but alsoper group,Kevo usesa notion of object (clone) family.

An objectfamily is a system-maintainedroup of objectswho are consideredo be
similar. When objectsare modified, the systemimplicitly movesobjectsfrom one
family to another,or createsnew families as necessaryFor instance when adding
new propertiesto a window object,a new family of objectsis createdunlessanother
objectwith identical propertiesalreadyexist. Conversely,f the addedpropertiesare
later removedfrom the window object, the object will again return to its earlier
family (provided that the family still exists).As the criterion of similarity, object
interfacecompatibility is used,meaningthat objectsare consideredo be similar if

they have the same external interface/signature.ln an ideal situation, object
comparisonshould be basedon behavioral compatibility, i.e., ensuringthat objects
reactto externalstimuli identically, but in practicecomingup with analgorithmthat
could determinel100% surely and efficiently whethertwo objectsare behaviorally
compatible is impossible.

Objectfamiliesin Kevo havea conceptualelationto family resemblancepresented
by philosophers.When combinedwith the notion of stand-aloneobjectsand the
reducedfocuson sharedpropertiesthis naturallyleadsto a designand programming
style in which advanceclassificationand categorizatiorhavea lesserrole. Yet even
Kevois still far awayfrom the modelpresentedy prototypetheoristswho arguethat
in modeling and classificationsubjectiveperceptionshave a central role. Thereis
some recent work in the areasoibject-oriented programming that aims atakinginto
accountthe subjectivefactorsin object-orienteddesign,but at this point this work is
still mostly preliminary (see, e.g., [Ha093]).

A Macintosh implementation of Kevo is available freely from address
“ftp://cs.uta.fi/[pub/keva Detailedinformation on Kevo is providedin the author's
doctoral thesis [Tai93] that is also available electronically from address
“ftp://cs.uta.fi/pub/atgs

6. Conclusion

In this paperwe have given a short overview of the historical and philosophical
backgroundof object-orientedorogrammingand examinedthe implicationsof these
backgroundissueson currentobject-orientedprogramminglanguagesand methods.
We recognizedAristotle as the "conceptualfather” of class-basedbject-oriented
programmingwhereashe work of Wittgensteinhasservedasan inspirationfor the
alternativeprototype-base@pproachlt was notedthat in philosophyand cognitive
psychology,the Aristotelian "classical"model hasbeenabandoned long time ago,
whereasn object-orientedorogrammingthat modelis still the prevalentone. This is
not necessarilya problem, however,since mostof the typical businessapplications
can be modeledfairly well evenwith the limited classicalmodel, especiallyif the
designersare awareof the limitations of the classicalmodel. It wasalso pointedout
that currentprototype-basedbject-orientedanguagesare poorly developedwhenit

comesto taking into accountthe conceptualand philosophical benefits of the
prototype-based approach, and that a lot of possibilities for fudsearchn this area

remain.

References

Aristo Barnes, J. (ed), The complete works of Aristotle volume 1 (the revised Oxford
translation), Princeton University Press, 1984.

Aus61 Austin, J.L., Philosophical papers. Oxford University Press, 1961

BDM73 Birtwistle, G.M., Dahl, O-J.,Myhrhaug,B., Nygaard K., Simulabegin.Studentlitteratur,
Lund, Sweden, 1973.

Ber91 Bergstein,P., Object-preservinglasstransformationsin PaepckeA. (ed), OOPSLA'91
ConferenceProceedinggPhoenix,Arizona, October6-11), ACM SIGPLAN Noticesvol
26, nr 11 (Nov) 1991, pp.299-313.

Bla91 Blaschek, G., Type-safe OOP with prototypes:the conceptsof Omega. Structured
Programming vol 12, nr 12 (Dec) 1991, pp.1-9.

Bla94 Blaschek, G., Object-oriented programming with prototypes. Springer-Verlag, 1994.
Bor86 Borning, A.H., Classes/ersusprototypesin object-orientedanguagesln Proceeding®f
ACM/IEEE Fall Joint Computer Conference, November 1986, pp.36-40.

BrC90 Bracha, G., Cook, W., Mixin-based inheritance. In Meyrowitz, N. (ed),
OOPSLA/ECOOP'9@ConferenceProceedingqOttawa, Canada,October21-25), ACM
SIGPLAN Notices vol 25, nr 10 (Oct) 1990, pp.303-311.

Bra83 Brachman, R., What Is-a is ana't® IEEE Computer vol 16, nr 10 (Oct) 1983, pp.30-36.

Bro86 Brooks, F.P.Jr.,No silver bullet — essenceand accidentsof software engineering.In
Kugler, H.J. (ed): Information Processing86, Elsevier Science Publishers (North-
Holland), 1986, pp.1069-1076. Also in IEEE Computer vol 20, nr 4 (Apr) 1987, pp.10-19.

Cas92 Casais, E., An incremental class reorganizationapproach.In Madsen, O.L. (ed),
ECOOP'92: European Conference on Object-Oriented Programming (Utrecht, The
Netherlands,June29-July 3), Lecture Notesin ComputerScience615, Springer-Verlag,
1992, pp.114-132.

Coo089 Cook, W.R., A denotationalsemanticsof inheritance.Ph.D. thesis,Brown University,
Technical report CS-89-33, May 1989.

Co092 Cook, W.R., Interfacesand specificationsfor the Smalltalk-80 collection classes.In
Paepcke, A(ed), OOPSLA'92ConferencéProceedinggVancouver CanadaQctoberl8-
22), ACM SIGPLAN Notices vol 27, nr 10 (Oct) 1992, pp.1-15.

DMC92 Dony,C., Malenfant,J., Cointe,P., Prototype-basethnguagesfrom a new taxonomyto
constructiveproposalsandtheir validation.In PaepckeA. (ed), OOPSLA'92Conference
Proceeding¢Vancouver CanadaQOctoberl8-22),ACM SIGPLAN Noticesvol 27, nr 10
(Oct) 1992, pp.201-217.

Gly94 Schwartz,B., Lentczner,M., Glyphic Codeworks(tm)scripting. Unpublishedmanual,

Glyphic Technology, 1994

Ha093

JoF88

Knu88

Lak87

Lie86

LTP86

Opd92

OpJo3

Plato

RMG76

RoM75

SLU88

Smi94

SLS94

Ste87

Harrison,W., OssherH., Subject-orientegorogramming(A critique of pure objects).In
OOPSLA'93 Conference Proceedings (Washington, D.C.), pp.411-428.

Johnson, R.E., Foote, B., Designing reusable classes.Journal of Object-Oriented
Programming vol 1, nr 2 (Jun/Jul) 1988, pp.22-35.

Knudsen,J.L., Name collision in multiple classification hierarchies.In Gjessing,S.,
Nygaard,K. (eds),ECOOP'88:EuropeanConferenceon Object-OrientedProgramming
(Oslo, Norway, August 15-17).ectureNotesin ComputerScience276, Springer-Verlag,
1988, pp.93-109.

Lakoff, G., Women,fire, and dangeroughings: what categoriesevealaboutthe mind.
University of Chicago Press, 1987.

Lieberman, H., Using prototypical objects to implement shared behavior in object-
orientedsystemsin Meyrowitz, N. (ed), OOPSLA'86ConferenceProceeding¢Portland,
Oregon,SeptembeR6-October2), ACM SIGPLAN Noticesvol 21, nr 11 (Nov) 1986,
pp.214-223.

LaLonde,W.R., Thomas,D.A., Pugh,J.R.,An exemplarbasedSmalltalk.In Meyrowitz,
N. (ed), OOPSLA'86ConferenceProceedinggPortland,Oregon,Septembel6-October
2), ACM SIGPLAN Notices vol 21, nr 11 (Nov) 1986, pp.322-330.

Opdyke, W.F., Refactoring object-orientedframeworks. Ph.D. thesis, University of
lllinois at Urbana-Champaign, Technical report UIUC-DCS-R-92-1759, 1992.

Opdyke,W.F., JohnsonR.E., Creatingabstractsuperclasseby refactoring.In Kwasny,
S.C.,Buck, J.F.(eds):1993ACM ComputerScienceConferencgIndianapolis,Indiana,
February, 16-18), ACM Press, 1993, pp.66-73.

Plato, The republic. Kustannusosakeyhti@Otava, Keuruu, Finland, 1981 (Finnish
translation).

RoschE., Mervis, C., Gray,W., JohnsonD., Poyes-BrahenR., Basicobjectsin natural
categories. Cognitive Psychology 8, 1976, pp.382-439.

Rosch, E., Mervis, C., Family resemblancesstudies in the internal structure of
categories. Cognitive Psychology 7, 1975, pp.573-605.

Stein, L.A., Lieberman, H., Ungar, D., A shared view of sharingtritety of Orlando.In
Kim, W., Lochowsky, F. (ed), Object-orientedconcepts,applicationsand databases,
Addison-Wesley, 1988, pp.31-48.

Smith, W.R., The Newton applicationarchitecture.In Proceedingsof the 39th IEEE
Computer Society International Conference (San Francisco), 1994, pp.156-161

Smith, R.B., Lentczner,M., Smith, W.R., Taivalsaari,A., Ungar, D., Prototype-based
languages: object lessons from class-free programming (panel). In OOPSLA'94
ConferenceProceeding¢Portland,Oregon,October23-27),ACM SIGPLAN Noticesvol
29, nr 10 (Oct) 1994, pp.102-112

Stein, L.A., Delegationis inheritance.In Meyrowitz, N. (ed), OOPSLA'87 Conference
Proceedings (Orlando, Florida, October 4-8), ACM SIGPLAN Notices vol 22, (D@
1987, pp.138-146.

Tai92

Tai93

Tou86

unS87

Wit53

You96

Zad65

Taivalsaari, A., Kevo — a prototype-basedobject-oriented language based on
concatenationand module operations. Technical report DCS-197-1R, University of
Victoria, B.C., Canada, June 1992,

Taivalsaari, A., A critical view of inheritance and reusability in object-oriented
programming. Ph.D. thesis, University of Jyvaskyla, Finland, Noveii®@8.ISBN 951-
34-0161-8.

Touretzky, D.S., The mathematicsof inheritancesystems.Researchnotesin artificial
intelligence, Morgan Kaufmann Publishers, 1986.

Ungar, D., Smith, R.B., Self: the power of simplicity.Nteyrowitz, N. (ed), OOPSLA'87
Conference Proceedings (Orlando, Florida, October 4-8), ACM SIGPLAN Notic@2yol
nr 12 (Dec) 1987, pp.227-241.

Wittgenstein, L., Philosophical investigations. Macmillan, New York, 1953.

Yourdon, E., Good enoughsoftware. Application DevelopmentStrategiesvol 8, nr 1
(Jan) 1996, pp.1-13.

Zadeh, L., Fuzzy sets. Information and Control vol 8, 1965, pp.338-353.

